Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna

نویسندگان

  • Jiu Li
  • Qingqing Ji
  • Saisai Chu
  • Yanfeng Zhang
  • Yan Li
  • Qihuang Gong
  • Kaihui Liu
  • Kebin Shi
چکیده

Monolayer molybdenum disulfide (MoS2) has recently attracted intense interests due to its remarkable optical properties of valley-selected optical response, strong nonlinear wave mixing and photocurrent/photovoltaic generation and many corresponding potential applications. However, the nature of atomic-thin thickness of monolayer MoS2 leads to inefficient light-matter interactions and thereby hinders its optoelectronic applications. Here we report on the enhanced and controllable photo-response in MoS2 by utilizing surface plasmonic resonance based on metallic nano-antenna with characteristic lateral size of 40 × 80 nm. Our nano-antenna is designed to have one plasmonic resonance in the visible range and can enhance the MoS2 photoluminescence intensity up to 10 folds. The intensity enhancement can be effectively tuned simply by the manipulation of incident light polarization. In addition, we can also control the oscillator strength ratio between exciton and trion states by controlling polarization dependent hot carrier doping in MoS2. Our results demonstrate the possibility in controlling the photo-response in broad two-dimensional materials by well-designed nano-antenna and facilitate its coming optoelectronic applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice.

We demonstrate strong exciton-plasmon coupling in silver nanodisk arrays integrated with monolayer MoS2 via angle-resolved reflectance microscopy spectra of the coupled system. Strong exciton-plasmon coupling is observed with the exciton-plasmon coupling strength up to 58 meV at 77 K, which also survives at room temperature. The strong coupling involves three types of resonances: MoS2 excitons,...

متن کامل

Polarization Control with Plasmonic Antenna Tips: A Universal Approach to Optical Nanocrystallography and Vector-Field Imaging.

Controlling the propagation and polarization vectors in linear and nonlinear optical spectroscopy enables us to probe the anisotropy of optical responses providing structural symmetry selective contrast in optical imaging. Here, we present a novel tilted antenna-tip approach to control the optical vector-field by breaking the axial symmetry of the nanoprobe in tip-enhanced near-field microscopy...

متن کامل

Study of Photo-Conductivity in MoS2 Thin Films Grown in Low-Temperature Aqueous Solution Bath

An experimental study over the optical response of thin MoS2 films grownby chemical bath deposition (CBD) method is presented. As two important factors, theeffect of bath temperature and growth time are considered on the photocurrentgeneration in the grown samples. The results show that increasing the growth time leadsto better optical response and higher difference betw...

متن کامل

Plasmonics Enhanced Average Broadband Absorption of Monolayer MoS2

Abs t rac t We have s tud ied cha rac te r i za t ion of micromechanical cleavage monolayer molybdenum disulfide (MoS2) deposited on SiO2/Si and glass substrates. Spherical gold (Au) nanoparticles were anchored on top of monolayer MoS2 film. Direct reflection spectra were measured, which infers significant improvement of total average absorption of monolayer MoS2 in Vis-NIR range of 400–800 nm ...

متن کامل

Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors.

Optical cavities with multiple tunable resonances have the potential to provide unique electromagnetic environments at two or more distinct wavelengths--critical for control of optical processes such as nonlinear generation, entangled photon generation, or photoluminescence (PL) enhancement. Here, we show a plasmonic nanocavity based on a nanopatch antenna design that has two tunable resonant m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016